Learning Objective: Describe the difference between ionic and covalent bonding and differentiate between ionic and covalent compounds

Read more about this topic: Section 7.1, Section 7.2, and Section 7.5

- 1. Select all of the ionic compounds
 - $a. \ MnCl_2$
 - b. SO₂
 - c. H₂O
 - d. $Be(NO_3)_2$
 - e. NH₄Cl
- 2. Select all of the covalent compounds
 - a. CS₂
 - b. KNO₃
 - c. FeO
 - d. NH₃
 - e. HC₂H₃O₂
- **3.** Consider the following diagram:

B

- a. Which of the diagrams depicts the bonding in a covalent solid?
- b. Which of the diagrams depicts the bonding in an ionic solid?
- 4. Consider each of these ionic compounds: MgO, CaO, RbCl, and CsCl
 - a. Which compound will have the largest lattice energy?
 - b. Which compound will have the smallest lattice energy?
- 5. Calculate the ΔH_{rxn} in kJ for the following reaction using the bond energies in <u>Table 7.2</u>

Watch a video of a similar problem

6. Calculate the ΔH_{rxn} in kJ for the following reaction using the bond energies in Table 7.2

7. The enthalpy of reaction for the following reaction is 183 kJ/mol. Given the bond energies below, what is the bond energy of the X=X bond?

Bond	Energy (kJ/mol)
X-Y	392
Z-Z	252
X-Z	274
X-X	259

Watch a video of a similar problem

8. Consider a series of bonds, which statement is most likely to be true

- a. A is the shortest bond, A is the weakest bond
- b. A is the shortest bond, A is the strongest bond
- c. A is the longest bond, A is the weakest bond
- d. A is the longest bond, A is the strongest bond

Learning Objective: Draw Lewis symbols, structures and resonance structures; use formal charge to rank likely Lewis structures

Read more about this topic: Section 7.3 and Section 7.4

9. Consider the following unknown compound XF_4 , where X is an element with six valence electrons and an electronegativity of 2.7. What is the most likely Lewis Structure for this compound

Watch a video of a similar problem

10. Assign the formal charge for each atom in the following structure.

Watch a video of a similar problem

11. Assign the formal charge for each atom in the following structure

Watch a video of a similar problem

- **12.** How many lone pairs are on the central atom in CH_2O ? Watch a video of a similar problem
- **13.** Rank the resonance structures below based on how likely they are to contribute to the resonance hybrid

14. Which of the following Lewis structures is less likely?

- a. Structure 1 is less likely because it breaks the octet rule
- b. Structure 1 is less likely because it does not minimize formal charge
- c. Structure 2 is less likely because it breaks the octet rule
- d. Structure 2 is less likely because it does not minimize formal charge

Learning Objective: Use VSEPR to determine atomic orbital hybridization, predict electron pair and molecular geometry for molecules and ions

Read more about this topic: Section 7.6

- **15.** Rank the following species in terms of increasing N—H bond angle NH₄⁺, NH₂⁻, NH₃
- **16.** Identify the geometry and bond angles for the following unknown compound: XF₅, where X is an element below the third period, with seven valence electrons and an electronegativity of 2.9
- **17.** Identify the geometry and bond angles for the following unknown compound: XF₄, where X is an element below the third period, with six valence electrons and an electronegativity of 2.6

- **18.** Identify the geometry and bond angles for the following unknown compound: XOCl₂, where X is an element with four valence electrons and an electronegativity of 2.4
- **19.** Consider the geometry in each of the following cases:
 - a. What is the geometry for an unknown molecule, XH₄, where X is an element with 4 valence electrons and an electronegativity of 2.6

b. What is the geometry for an unknown molecule, XCl₄, where X is an element with 6 valence electrons and an electronegativity of 2.6

c. What is the geometry for an unknown molecule, XS_2 , where X is an element with 4 valence electrons and an electronegativity of 2.4

Learning Objective: Describe sigma and pi bonding in hybrid and molecular orbitals. Understand the differences between valence bond and molecular orbital theory

Read more about this topic <u>Section 8.2</u>

20. Assign the hybridization and bond angles at each of the labelled atoms

a.

methyl anthranilate

b.

21. How many sigma (σ) and pi (π) bonds are in the following molecule?

22. How many sigma (σ) and pi (π) bonds are in the following molecule?

methyl anthranilate

Learning Objective: Use the concept of electronegativity to predict bond covalency, bond polarity, and the dipole moment of molecules

Read more about this topic: Section 7.6

- 23. Consider the following group of bonds:F—F, H—Cl, H—O, C—H, P—H, S—O
 - a. Which bonds are polar?
 - b. Which bonds are nonpolar?
- 24. Use Figure 7.6 to indicate which atom in each polar covalent bond would have the partial negative charge and which would have the partial positive charge H—Cl; Br—C; P—O; F—N
- 25. Which of the following molecules will have a dipole moment? XeF₂, H₂O, NH₃, CH₂O, CH₄
- **26.** Consider the unknown compound JO_2 , where J is an unknown element with 4 valence electrons and an electronegativity of 2.4. Determine whether this molecule is polar or nonpolar.